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ABSTRACT 

The International X-ray Observatory (IXO) is a merger of the former ESA XEUS and NASA Constellation-X missions, 
with additional collaboration from JAXA, proposed for launch ~2020.  IXO will address the leading astrophysical 
questions in the ‘hot universe’ through its breakthrough capabilities in X-ray spectroscopy.  The mission covers the 0.1 
to 40 keV energy range, complementing the capabilities of the next generation observatories, such as ALMA, LSST, 
JWST and 30 meter ground-based telescopes.  An X-ray Grating Spectrometer is baselined to provide science in the 
energy range 0.3-1.0 keV at a spectral resolution of E/ΔE > 3,000 with an effective area greater than 1,000 cm2.  This 
will require an array of soft X-ray enhanced CCDs operating at a modest frame rate to measure the diffracted light in 
both position and energy.  Here we describe the baseline camera for the Off-plane XGS instrument using mature CCD 
technology. 
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1. OFF-PLANE X-RAY GRATING SPECTROMETER 

OPXGS shall have spectral resolution E/ΔE = 3,000 with an effective area (Aeff) of 1,000 cm2 over the entire energy 
band 0.3-1.0 keV.  OPXGS comprises a grating system to disperse a portion of the telescope beam and a camera system 
to detect and process the incident X-rays.  OPXGS consists of an array of reflection gratings in the off-plane mount that 
diffracts light onto an array of dedicated imaging detectors[1].  Light intersects the surface of the grating at grazing 
incidence, ~2.5°, and nearly parallel to the groove direction, maximizing the illumination efficiency on the gratings.  
Furthermore, the groove profile is blazed to preferentially diffract light to only one side of zero order thus increasing the 
efficiency of light collected into a single detector array, reducing the total mass of the instrument. 

The effective telescope PSF can be minimized by only sampling a fraction of the beam - limiting the azimuthal coverage 
of the grating array, or in other words sub-aperturing.  This will decrease the width of the spectral lines in the dispersion 
direction thus increasing spectral resolution. Therefore, the optical quality of the gratings is approximately that of the 
telescope optics and is relaxed by an additional factor equal to the sub-aperture factor. 

An off-plane grating array can in principle achieve the instrument performance requirements at any position along the 
optical axis from just aft of the optics to just a few meters away from the focal plane, due to the converging beam.  
Taking into account the design of the IXO spacecraft, this gives three practical solutions for mounting the grating array 
and is shown in Figure 1. 
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Figure 1:  Schematic showing the three basic grating locations. Note that the distances shown are indicative only. 

The first position accommodates the gratings just aft of the Flight Mirror Assembly and is the so-called “19.5 m” option, 
reflecting the distance between the grating and its focal plane.  However this location requires the largest collecting area 
of gratings and hence the largest mass.  Secondly, grating arrays are mounted at the spacecraft’s avionics bus which 
gives a 13.4 m seperation between grating and focal plane.  This provides a modest total instrument mass whilst easily 
meeting the mission requirement but introduces a requirement for three-body alignment.  Finally, gratings are located 
closer to the fixed instrument platform on an additional mechanical standoff that can also provide support structure for a 
common stray light baffle and energetic particle deflectors.  In this case a “tower” concept is invoked; after detailed 
study the grating arrays can be located at ~5.16 m from the focal plane, meeting mission requirements with an additional 
20% margin for resolution.  Therefore it was agreed to baseline the tower solution for the OPXGS design. 

2. RAYTRACE & DETECTOR LAYOUT 

Six grating modules disperse light into the six separate 
arcs and zero order locations as shown in Figure 2.  
Fourteen spectral CCDs (1-14) will  be used collect 
light in 2nd through 5th order (61 Å to 92 Å) to meet 
resolution requirements or, depending on tighter 
pointing tolerance and knowledge of image blur effects, 
the array can be reduced in size to the innermost twelve 
CCDs and collect light in 1st through 3rd order (36 Å to 
72 Å).  Four extra CCDs will monitor the zero order 
reflections from the gratings to provide wavelength 
calibration and are labeled 15-18 in Figure 2. 

Both pairs of three arcs of dispersion are separated by 2 
mm allowing each to be easily spatially resolved from 
one another.  Each arc, aside from the upper-most ones 
in CCDs 2 and 3, fall no closer than 3 mm from the 
boundaries of the detectors in the array.  Due to the 
high effective area of the instrument at these 
wavelengths and the spectral redundancy of utilizing 
six arcs of dispersion, any potential losses through 
telescope jitter at these locations will still yield 
performance above 1,000 cm2. 

 

 

 

Figure 2:  Instrument raytrace and CCD detector window 
layout 

Proc. of SPIE Vol. 7742  77420X-2

Downloaded from SPIE Digital Library on 09 Aug 2010 to 128.183.56.12. Terms of Use:  http://spiedl.org/terms



 

 

3. CAMERA BOX & ACCOMODATION 

A single OPXGS camera box is mounted on the Fixed Instrument Platform (FIP) and captures the dispersed spectra from 
the grating modules and four of the six zero order reflections for wavelength calibration.  The position of the camera 
relative to the main focus of the telescope is shown in Figure 3.  The camera box has been designed to ensure adequate 
clearance from the X-Ray Microcalorimeter Spectrometer (XMS) instrument located on the Movable Instrument 
Platform (MIP). 

 

Figure 3:  Location of the camera on the Fixed Instrument Platform. 

The camera box comprises three parts, accommodated in two hermetically sealed compartments.  Firstly, the main 
chamber, shown right in Figure 4, houses a passively cooled detector array of 18 identical CCDs that interface via a cold 
bench to an external radiator.  A stray light baffle, shown in Figure 5, extends from the camera box towards the grating 
modules whose aperture is terminated by a door (not shown) that remains closed for contamination control until the 
spacecraft has sufficiently out-gassed in orbit.  The chamber shown to the left of Figure 4 houses both the complete 
camera electronics (drive, readout and data processing) and electronics for thermal control of the gratings, tower and 
CCD cold bench. 

       

Figure 4:  The camera box.  Left, the warm electronics.  
Right, the CCD cold bench. 

Figure 5:  Stray light baffle.
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7. OPTICAL BLOCKING FILTERS 

The optical blocking filters employed on the Reflection Grating Spectrometer (RGS) instrument onboard XMM-Newton 
had a minimum thickness of 45 nm Al deposited onto a 26 nm MgF2 buffer[4].  The detectors in the OP-XGS array will 
be read out at a rate almost 2 orders of magnitude faster and are therefore less susceptible to stray-light than the RGS and 
can therefore tolerate a thinner filter.  The baseline optical blocking filter for the CCDs is therefore 28 nm of Al 
deposited onto a 13 nm buffer layer of MgF2.  This is highly advantageous to the mission as this increases the quantum 
efficiency of the detectors at the softer end of the energy spectrum and hence increases the effective area of the 
instrument as a whole.  Figure 13 demonstrates the increase in effective area by reducing the filter thickness. 

 

Figure 13:  Increases to instrument effective area through reduced optical blocking filter thicknesses 

8. MOLECULAR CONTAMINATION 

The camera will be launched sealed by a door, shown in Figure 14, which will only be opened post launch and after 
sufficient time has passed for the spacecraft to have out-gassed significantly and the pressure within the telescope tube to 
have reduced. 

 

Figure 14:  Hermetically sealed door at entrance to stray light baffle to prevent early contamination build up on CCDs 
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Molecular build-up on the CCDs has a similar affect as the application of a filter.  For the purpose of this study it has 
been assumed that the contamination is uniform across the surface of the CCD and that all molecular contamination will 
occur after launch. 

Taking the back-illuminated CCDs used on the RGS and the baseline filter as the starting 100% quantum efficiency (QE) 
value, the effect of applying hydrocarbon contamination and ice to the CCD surface has been investigated.  The 
hydrocarbon effect was studied at 300 eV (the point in the OPXGS bandpass that is closest to the carbon k-shell edge 
and so the point that will be most affected by the hydrocarbon and ice was studied at the oxygen k-shell edge (523 eV)).  
Figure 15 shows the effect of different levels of this contamination of the QE relative to the original QE of the device. 

 

Figure 15:  Effect of hydrocarbon and water contamination upon relative QE at 300 eV and 523 eV respectively. 

This clearly shows that hydrocarbons have a larger affect on the QE than ice, but it is unclear of the affect across the 
energy range.  If the limit on contamination build-up is defined by the point at which it causes the largest drop in QE 
then for a 10 % drop in QE the instrument can tolerate 32 nm of hydrocarbons or 67 nm of ice and for a 50 % drop the 
tolerances are 208 nm and 423 nm respectively.  

9. ELECTRON DIVERTOR ANALYSIS 

Electrons with energy greater than 20 keV incident on the OPXGS detector array can easily be identified and their 
effects removed during image processing.  However, it is important to prevent electrons with energies less than 20 keV 
whose effects cannot be easily accounted for from interacting with the CCDs.  This is done through magnetic deflectors 
that redirect incident particles away from the OPXGS focal plane. 

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

80

90

100

Contamination depth (nm)

R
el

at
iv

e 
Q

E 
(%

)

 

 

C8H8 contamination

Ice contamination

32 nm

67 nm

208 nm

208 nm

Proc. of SPIE Vol. 7742  77420X-9

Downloaded from SPIE Digital Library on 09 Aug 2010 to 128.183.56.12. Terms of Use:  http://spiedl.org/terms



 

 

Models of electrodynamics were used to calculate the required field strength that is needed to deflect incident electrons 
away from the CCD camera array.  The analysis first contains a calculation of the electron velocity which is then used to 
work out the required field strength in order to deflect the electrons within the length of the stray light baffle.   

In the analysis the following were assumed: The incident electrons are assumed to be collimated when they arrive at the 
light baffle entrance and as such any electrons approaching from at an angle from the side are not accounted for.  The 
magnetic field is assumed to perfectly uniform across the stray light baffle.  The stray light baffle is assumed to be a 
simple rectangle without any complex structure.  Finally, the radial distance of the electrons path is the same as the 
length of the stray light baffle which will result in the electrons colliding with the stray light baffle instead of the CCD 
array. 

The required field strength to deflect incident 20 keV electrons was found to be 3 mT.  Assuming the Magnetic 
deflectors are made of 8 mm × 35 mm × 15 mm neodymium magnets, which are capable of producing fields >1 T, then it 
should be entirely feasible to create the required field strength.  Six such magnets are shown attached to external faces of 
the stray light baffle in Figures 5 & 15.  Any particles with lower energies should be deflected more and as such any 
particle with an energy <20 keV should be prevented from interacting with the CCDs. 

10. CONCLUSIONS 

A detailed study has been performed on the OPXGS instrument for IXO in the frame of the ESA Assessment phase 
study.  Considerable trade space has been covered in assessing the optimal instrument configuration.  

A baseline OPXGS instrument design has been established that meets, with margin, the requirements of the mission as 
currently specified to provide an effective area with an average over the bandpass of 1,480cm2, with a resolution of 3,600 
(including 20% margin) and a total mass ~75 Kg. 

The camera baselines a compact RGS type CCD Array (12 spectral detectors), surrounded by aluminium radiation 
shielding, that is passively cooled by two radiators.  Dispersed light is collected by 14 CCDs from 6 grating modules that 
offers both spectral redundancy and redundant zero order monitors.  Where light from separate orders overlaps within 
each arc of dispersion only 200 eV order seperation is required. 

We present a specification for custom devices that are based on existing and flight-proven features, although further 
development is required to reduce the thickness of the optical blocking filters. 
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